
5C H A P T E R

Process
Synchronization

Practice Exercises

5.1 In Section 5.4, we mentioned that disabling interrupts frequently can
affect the system’s clock. Explain why this can occur and how such
effects can be minimized.
Answer:
The system clock is updated at every clock interrupt. If interrupts were
disabled—particularly for a long period of time—it is possible the
system clock could easily lose the correct time. The system clock is
also used for scheduling purposes. For example, the time quantum for a
process is expressed as a number of clock ticks. At every clock interrupt,
the scheduler determines if the time quantum for the currently running
process has expired. If clock interrupts were disabled, the scheduler
could not accurately assign time quantums. This effect can be minimized
by disabling clock interrupts for only very short periods.

5.2 Explain why Windows, Linux, and Solaris implement multiple locking
mechanisms. Describe the circumstances under which they use spin-
locks, mutex locks, semaphores, adaptive mutex locks, and condition
variables. In each case, explain why the mechanism is needed.
Answer:
These operating systems provide different locking mechanisms depend-
ing on the application developers’ needs. Spinlocks are useful for
multiprocessor systems where a thread can run in a busy-loop (for a
short period of time) rather than incurring the overhead of being put in
a sleep queue. Mutexes are useful for locking resources. Solaris 2 uses
adaptive mutexes, meaning that the mutex is implemented with a spin
lock on multiprocessor machines. Semaphores and condition variables
are more appropriate tools for synchronization when a resource must
be held for a long period of time, since spinning is inefficient for a long
duration.

5.3 What is the meaning of the term busy waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

13



14 Chapter 5 Process Synchronization

Answer:
Busy waiting means that a process is waiting for a condition to be satisfied
in a tight loop without relinquishing the processor. Alternatively, a
process could wait by relinquishing the processor, and block on a
condition and wait to be awakened at some appropriate time in the
future. Busy waiting can be avoided but incurs the overhead associated
with putting a process to sleep and having to wake it up when the
appropriate program state is reached.

5.4 Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.
Answer:
Spinlocks are not appropriate for single-processor systems because the
condition that would break a process out of the spinlock can be obtained
only by executing a different process. If the process is not relinquishing
the processor, other processes do not get the opportunity to set the
program condition required for the first process to make progress. In a
multiprocessor system, other processes execute on other processors and
thereby modify the program state in order to release the first process
from the spinlock.

5.5 Show that, if the wait() and signal() semaphore operations are not
executed atomically, then mutual exclusion may be violated.
Answer:
A wait operation atomically decrements the value associated with a
semaphore. If two wait operations are executed on a semaphore when
its value is 1, if the two operations are not performed atomically, then it is
possible that both operations might proceed to decrement the semaphore
value, thereby violating mutual exclusion.

5.6 Illustrate how a binary semaphore can be used to implement mutual
exclusion among n processes.
Answer:
The n processes share a semaphore, mutex, initialized to 1. Each process
Pi is organized as follows:

do {
wait(mutex);

/* critical section */

signal(mutex);

/* remainder section */
} while (true);


