
8
CHAPTER

Deadlocks

Exercises

8.12 Consider the traf�c deadlock depicted in Figure 8.12.

a. Show that the four necessary conditions for deadlock hold in this
example.

b. State a simple rule for avoiding deadlocks in this system.

8.13 Draw the resource-allocation graph that illustrates deadlock from the
program example shown in Figure 8.1 in Section 8.2.

•

•

•

•

•

•

• • •

• • •

Figure 8.11 Traf�c deadlock for Exercise 8.12.

45

46 Chapter 8 Deadlocks

8.14 In Section 6.8.1, we described a potential deadlock scenario involv-
ing processes P0 and P1 and semaphores S and Q. Draw the resource-
allocation graph that illustrates deadlock under the scenario presented
in that section.

8.15 Assume that a multithreaded application uses only reader–writer locks
for synchronization. Applying the four necessary conditions for dead-
lock, is deadlock still possible if multiple reader–writer locks are used?

8.16 The program example shown in Figure 8.1 doesn’t always lead to dead-
lock. Describe what role the CPU scheduler plays and how it can con-
tribute to deadlock in this program.

8.17 In Section 8.5.4, we described a situation in which we prevent deadlock
by ensuring that all locks are acquired in a certain order. However, we
also point out that deadlock is possible in this situation if two threads
simultaneously invoke the transaction() function. Fix the transac-
tion() function to prevent deadlocks.

• •
R1 R 2

T1 T3T2

(a)

T1 T3

T 2

• ••• • •

(b)

R1 R 2 R 3

•• ••

T1 T 3T2

(c)

R1 R 2

••

T1

T3 T 4

T2

 (d)

R1 R 2

••

•• ••

T1

T3 T4

T2

(e) (f)

R1 R 2

• •• ••

T1

T3 T4

T2

R1 R2 R 3

Figure 8.12 Resource-allocation graphs for Exercise 8.18.

Exercises 47

8.18 Which of the six resource-allocation graphs shown in Figure 8.12 illus-
trate deadlock? For those situations that are deadlocked, provide the
cycle of threads and resources. Where there is not a deadlock situation,
illustrate the order in which the threads may complete execution.

8.19 Compare the circular-wait schemewith the various deadlock-avoidance
schemes (like the banker’s algorithm) with respect to the following
issues:

a. Runtime overhead

b. System throughput

8.20 In a real computer system, neither the resources available nor the
demands of threads for resources are consistent over long periods
(months). Resources break or are replaced, new processes and threads
come and go, and new resources are bought and added to the system.
If deadlock is controlled by the banker’s algorithm, which of the
following changes can be made safely (without introducing the
possibility of deadlock), and under what circumstances?

a. Increase Available (new resources added).

b. DecreaseAvailable (resource permanently removed from system).

c. Increase Max for one thread (the thread needs or wants more
resources than allowed).

d. Decrease Max for one thread (the thread decides it does not need
that many resources).

e. Increase the number of threads.

f. Decrease the number of threads.

8.21 Consider the following snapshot of a system:

Allocation Max

A B C D A B C D

T0 2 1 0 6 6 3 2 7
T1 3 3 1 3 5 4 1 5
T2 2 3 1 2 6 6 1 4
T3 1 2 3 4 4 3 4 5
T4 3 0 3 0 7 2 6 1

What are the contents of the Needmatrix?

8.22 Consider a system consisting of four resources of the same type that
are shared by three threads, each of which needs at most two resources.
Show that the system is deadlock free.

8.23 Consider a system consisting of m resources of the same type being
shared by n threads. A thread can request or release only one resource
at a time. Show that the system is deadlock free if the following two
conditions hold:

48 Chapter 8 Deadlocks

a. The maximum need of each thread is between one resource and m

resources.

b. The sum of all maximum needs is less than m + n.

8.24 Consider the version of the dining-philosophers problem in which the
chopsticks are placed at the center of the table and any two of them
can be used by a philosopher. Assume that requests for chopsticks are
made one at a time. Describe a simple rule for determining whether a
particular request can be satis�ed without causing deadlock given the
current allocation of chopsticks to philosophers.

8.25 Consider again the setting in the preceding exercise. Assume now that
each philosopher requires three chopsticks to eat. Resource requests are
still issued one at a time. Describe some simple rules for determining
whether a particular request can be satis�ed without causing deadlock
given the current allocation of chopsticks to philosophers.

8.26 We can obtain the banker’s algorithm for a single resource type from
the general banker’s algorithm simply by reducing the dimensionality
of the various arrays by 1.

Show through an example that we cannot implement the multiple-
resource-type banker’s scheme by applying the single-resource-type
scheme to each resource type individually.

8.27 Consider the following snapshot of a system:

Allocation Max

A B C D A B C D

T0 1 2 0 2 4 3 1 6
T1 0 1 1 2 2 4 2 4
T2 1 2 4 0 3 6 5 1
T3 1 2 0 1 2 6 2 3
T4 1 0 0 1 3 1 1 2

Using the banker’s algorithm, determine whether or not each of the
following states is unsafe. If the state is safe, illustrate the order in which
the threads may complete. Otherwise, illustrate why the state is unsafe.

a. Available = (2, 2, 2, 3)

b. Available = (4, 4, 1, 1)

c. Available = (3, 0, 1, 4)

d. Available = (1, 5, 2, 2)

8.28 Consider the following snapshot of a system:

Exercises 49

Allocation Max Available

A B C D A B C D A B C D

T0 3 1 4 1 6 4 7 3 2 2 2 4
T1 2 1 0 2 4 2 3 2
T2 2 4 1 3 2 5 3 3
T3 4 1 1 0 6 3 3 2
T4 2 2 2 1 5 6 7 5

Answer the following questions using the banker’s algorithm:

a. Illustrate that the system is in a safe state by demonstrating an
order in which the threads may complete.

b. If a request from thread T4 arrives for (2, 2, 2, 4), can the request be
granted immediately?

c. If a request from thread T2 arrives for (0, 1, 1, 0), can the request be
granted immediately?

d. If a request from thread T3 arrives for (2, 2, 1, 2), can the request be
granted immediately?

8.29 What is the optimistic assumptionmade in the deadlock-detection algo-
rithm? How can this assumption be violated?

8.30 A single-lane bridge connects the two Vermont villages of North Tun-
bridge and South Tunbridge. Farmers in the two villages use this bridge
to deliver their produce to the neighboring town. The bridge can become
deadlocked if a northbound and a southbound farmer get on the bridge
at the same time. (Vermont farmers are stubborn and are unable to
back up.) Using semaphores and/or mutex locks, design an algorithm
in pseudocode that prevents deadlock. Initially, do not be concerned
about starvation (the situation in which northbound farmers prevent
southbound farmers from using the bridge, or vice versa).

8.31 Modify your solution to Exercise 8.30 so that it is starvation-free.

	Deadlocks
	Exercises

