
15CHAPTER

File -System
Internals

Practice Exercises

15.1 Explain how the VFS layer allows an operating system to support mul-
tiple types of �le systems easily.

Answer:
VFS introduces a layer of indirection in the �le system implementation.
In manyways, it is similar to object-oriented programming techniques.
System calls can be made generically (independent of �le system type).
Each �le system type provides its function calls and data structures
to the VFS layer. A system call is translated into the proper speci�c
functions for the target �le system at the VFS layer. The calling program
has no �le-system-speci�c code, and the upper levels of the system call
structures likewise are �le system-independent. The translation at the
VFS layer turns these generic calls into �le-system-speci�c operations.

15.2 Why have more than one �le system type on a given system?

Answer:
File systems can be designed and implemented with speci�c uses in
mind, and optimized for those uses. Consider a virtual memory �le
system vs. a secondary storage �le system. The memory-based one
neednot concern itselfwith fragmentation, or persistingdata structures
in the face of power loss. There are also special-purpose �le systems
like the procfs �le system, designed to give the convenient �le system
interface to system aspects like the process name space and process
resource use.

15.3 On a Unix or Linux system that implements the procfs �le system,
determine how to use the procfs interface to explore the process name
space. What aspects of processes can be viewed via this interface? How
would the same information be gathered on a system lacking the procfs
�le system?

Answer:

561



562 Chapter 15 File-System Internals

On systems containing the procfs psuedo-�lesystem, details vary but
generally the �le system is mounted at /proc, and exploring it with �le
system commands can reveal the following:

• Each process is represented by its processID, so counting them
reveals the number of processes in the system.

• Within each directory under the processID, details of the process
state such as its current working directory, command line used to
start the process, priority information, memory use information,
lock information, open �le information, and so on.

• Some procfs also provide interfaces to other kernel structures such
as DMA structures, device lists, �le system lists and so on.

See the proc(5)manual page for details on a given system.
Without procfs, to provide the same information, separate

system calls per information type is used, or the ability to open
the kernel memory space through /dev/kmem or /dev/sys is
provided. Then programs using these interfaces need to be written
to extract the data and present it in human-understandable form. See
http://osxbook.com/book/bonus/ancient/procfs for a nice exploration
of using procfs vs. not having it available.

15.4 Why do some systems integrate mounted �le systems into the root �le
system naming structure, while others use a separate naming method
for mounted �le systems?

Answer: As with many aspects of operating system design, choices
can be arbitrary or based on some small implementation detail and
then exist long after any justify reason. Generally regarding �le system
mounting, integration with the root �le system naming has proven
to be more �exible and useful and separate mount point naming and
therefore prevails on most �le systems.

15.5 Given a remote �le access facility such as ftp, why were remote �le
systems like NFS created?

Answer: Users of computer systems value ease-of-use in most cases.
The more general purpose, and more widely used and operating sys-
tem is, the more seamless its operation should be. In the case of remote
�le access, it is easier for users to use an familiar facility (such as a
�le system interface) rather than separate commands. And because �le
systems are tried and true, well integrated, and full featured, existing
tools, scripts, and use cases can apply to remote �le systems just as local
�le systems by using a �le system interface for remote �le access.

http://osxbook.com/book/bonus/ancient/procfs

	File-System Internals
	Exercises


