Mass-Storage Structure

Practice Exercises

11.1 Is disk scheduling, other than FCFS scheduling, useful in a single-user environment? Explain your answer.

СНА

- **11.2** Explain why SSTF scheduling tends to favor middle cylinders over the innermost and outermost cylinders.
- **11.3** Why is rotational latency usually not considered in disk scheduling? How would you modify SSTF, SCAN, and C-SCAN to include latency optimization?
- **11.4** Why is it important to balance file-system I/O among the disks and controllers on a system in a multitasking environment?
- **11.5** What are the tradeoffs involved in rereading code pages from the file system versus using swap space to store them?
- **11.6** Is there any way to implement truly stable storage? Explain your answer.
- **11.7** It is sometimes said that tape is a sequential-access medium, whereas a hard disk is a random-access medium. In fact, the suitability of a storage device for random access depends on the transfer size. The term *streaming transfer rate* denotes the rate for a data transfer that is underway, excluding the effect of access latency. In contrast, the *effective transfer rate* is the ratio of total bytes to total seconds, including overhead time such as access latency.

Suppose we have a computer with the following characteristics: the level-2 cache has an access latency of 8 nanoseconds and a streaming transfer rate of 800 megabytes per second, the main memory has an access latency of 60 nanoseconds and a streaming transfer rate of 80 megabytes per second, the hard disk has an access latency of 15 milliseconds and a streaming transfer rate of 5 megabytes per second, and a tape drive has an access latency of 60 seconds and a streaming transfer rate of 2 megabytes per second.

478 Chapter 11 Mass-Storage Structure

- a. Random access causes the effective transfer rate of a device to decrease, because no data are transferred during the access time. For the disk described, what is the effective transfer rate if an average access is followed by a streaming transfer of (1) 512 bytes, (2) 8 kilobytes, (3) 1 megabyte, and (4) 16 megabytes?
- b. The utilization of a device is the ratio of effective transfer rate to streaming transfer rate. Calculate the utilization of the disk drive for each of the four transfer sizes given in part a.
- c. Suppose that a utilization of 25 percent (or higher) is considered acceptable. Using the performance figures given, compute the smallest transfer size for a disk that gives acceptable utilization.
- d. Complete the following sentence: A disk is a randomaccess device for transfers larger than _____ bytes and is a sequential-access device for smaller transfers.
- e. Compute the minimum transfer sizes that give acceptable utilization for cache, memory, and tape.
- f. When is a tape a random-access device, and when is it a sequential-access device?
- **11.8** Could a RAID level 1 organization achieve better performance for read requests than a RAID level 0 organization (with nonredundant striping of data)? If so, how?
- **11.9** Give three reasons to use HDDs as secondary storage.
- **11.10** Give three reasons to use NVM devices as secondary storage.