
12C H A P T E R

File-System
Implementation

Practice Exercises

12.1 Consider a file currently consisting of 100 blocks. Assume that the file-
control block (and the index block, in the case of indexed allocation)
is already in memory. Calculate how many disk I/O operations are
required for contiguous, linked, and indexed (single-level) allocation
strategies, if, for one block, the following conditions hold. In the
contiguous-allocation case, assume that there is no room to grow at
the beginning but there is room to grow at the end. Also assume that
the block information to be added is stored in memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.

e. The block is removed from the middle.

f. The block is removed from the end.

Answer:
The results are:

Contiguous Linked Indexed
a. 201 1 1
b. 101 52 1
c. 1 3 1
d. 198 1 0
e. 98 52 0
f. 0 100 0

12.2 What problems could occur if a system allowed a file system to be
mounted simultaneously at more than one location?
Answer:

43



44 Chapter 12 File-System Implementation

There would be multiple paths to the same file, which could confuse
users or encourage mistakes (deleting a file with one path deletes the
file in all the other paths).

12.3 Why must the bit map for file allocation be kept on mass storage, rather
than in main memory?
Answer:
In case of system crash (memory failure) the free-space list would not
be lost as it would be if the bit map had been stored in main memory.

12.4 Consider a system that supports the strategies of contiguous, linked,
and indexed allocation. What criteria should be used in deciding which
strategy is best utilized for a particular file?
Answer:

• Contiguous—if file is usually accessed sequentially, if file is
relatively small.

• Linked—if file is large and usually accessed sequentially.

• Indexed—if file is large and usually accessed randomly.

12.5 One problem with contiguous allocation is that the user must preallo-
cate enough space for each file. If the file grows to be larger than the
space allocated for it, special actions must be taken. One solution to this
problem is to define a file structure consisting of an initial contiguous
area (of a specified size). If this area is filled, the operating system
automatically defines an overflow area that is linked to the initial
contiguous area. If the overflow area is filled, another overflow area
is allocated. Compare this implementation of a file with the standard
contiguous and linked implementations.
Answer:
This method requires more overhead then the standard contiguous
allocation. It requires less overhead than the standard linked allocation.

12.6 How do caches help improve performance? Why do systems not use
more or larger caches if they are so useful?
Answer:
Caches allow components of differing speeds to communicate more
efficiently by storing data from the slower device, temporarily, in
a faster device (the cache). Caches are, almost by definition, more
expensive than the device they are caching for, so increasing the number
or size of caches would increase system cost.

12.7 Why is it advantageous for the user for an operating system to
dynamically allocate its internal tables? What are the penalties to the
operating system for doing so?
Answer:
Dynamic tables allow more flexibility in system use growth — tables
are never exceeded, avoiding artificial use limits. Unfortunately, kernel
structures and code are more complicated, so there is more potential
for bugs. The use of one resource can take away more system resources
(by growing to accommodate the requests) than with static tables.



Practice Exercises 45

12.8 Explain how the VFS layer allows an operating system to support
multiple types of file systems easily.
Answer:
VFS introduces a layer of indirection in the file system implementation.
In many ways, it is similar to object-oriented programming techniques.
System calls can be made generically (independent of file system type).
Each file system type provides its function calls and data structures
to the VFS layer. A system call is translated into the proper specific
functions for the target file system at the VFS layer. The calling program
has no file-system-specific code, and the upper levels of the system call
structures likewise are file system-independent. The translation at the
VFS layer turns these generic calls into file-system-specific operations.




