
7C H A P T E R

Deadlocks

In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; if the resources are
not available at that time, the process enters a waiting state. Sometimes, a
waiting process is never again able to change state, because the resources it
has requested are held by other waiting processes. This situation is called
a deadlock. We discussed this issue briefly in Chapter 5 in connection with
semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: “When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone.”

In this chapter, we describe methods that an operating system can use
to prevent or deal with deadlocks. Although some applications can identify
programs that may deadlock, operating systems typically do not provide
deadlock-prevention facilities, and it remains the responsibility of program-
mers to ensure that they design deadlock-free programs. Deadlock problems
can only become more common, given current trends, including larger num-
bers of processes, multithreaded programs, many more resources within a
system, and an emphasis on long-lived file and database servers rather than
batch systems.

Bibliographical Notes

Most research involving deadlock was conducted many years ago. [Dijkstra
(1965)] was one of the first and most influential contributors in the deadlock
area. [Holt (1972)] was the first person to formalize the notion of deadlocks in
terms of an allocation-graph model similar to the one presented in this chapter.
Starvation was also covered by [Holt (1972)]. [Hyman (1985)] provided the
deadlock example from the Kansas legislature. A study of deadlock handling
is provided in [Levine (2003)].

The various prevention algorithms were suggested by [Havender (1968)],
who devised the resource-ordering scheme for the IBM OS/360 system. The
banker’s algorithm for avoiding deadlocks was developed for a single resource

21

http://dl.acm.org/citation.cfm?id=1102034
http://dl.acm.org/citation.cfm?id=1102034
http://doi.acm.org/10.1145/356603.356607
http://doi.acm.org/10.1145/356603.356607
http://scholar.google.com/scholar?hl/en&q=D Hyman The Columbus Chicken Statute and More Bonehead Legislation 1985
http://scholar.google.com/scholar?hl/en&q=G Levine Defining Deadlock 2003
http://dx.doi.org/10.1147/sj.72.0074


22 Chapter 7 Deadlocks

type by [Dijkstra (1965)] and was extended to multiple resource types by
[Habermann (1969)].

The deadlock-detection algorithm for multiple instances of a resource type,
which is described in Section 7.6.2, was presented by [Coffman et al. (1971)].

[Bach (1987)] describes how many of the algorithms in the traditional
UNIX kernel handle deadlock. Solutions to deadlock problems in networks are
discussed in works such as [Culler et al. (1998)] and [Rodeheffer and Schroeder
(1991)].

The witness lock-order verifier is presented in [Baldwin (2002)].

Bibliography

[Bach (1987)] M. J. Bach, The Design of the UNIX Operating System, Prentice Hall
(1987).

[Baldwin (2002)] J. Baldwin, “Locking in the Multithreaded FreeBSD Kernel”,
USENIX BSD (2002).

[Coffman et al. (1971)] E. G. Coffman, M. J. Elphick, and A. Shoshani, “System
Deadlocks”, Computing Surveys, Volume 3, Number 2 (1971), pages 67–78.

[Culler et al. (1998)] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer
Architecture: A Hardware/Software Approach, Morgan Kaufmann Publishers Inc.
(1998).

[Dijkstra (1965)] E. W. Dijkstra, “Cooperating Sequential Processes”, Technical
report, Technological University, Eindhoven, the Netherlands (1965).

[Habermann (1969)] A. N. Habermann, “Prevention of System Deadlocks”,
Communications of the ACM, Volume 12, Number 7 (1969), pages 373–377, 385.

[Havender (1968)] J. W. Havender, “Avoiding Deadlock in Multitasking Sys-
tems”, IBM Systems Journal, Volume 7, Number 2 (1968), pages 74–84.

[Holt (1972)] R. C. Holt, “Some Deadlock Properties of Computer Systems”,
Computing Surveys, Volume 4, Number 3 (1972), pages 179–196.

[Hyman (1985)] D. Hyman, The Columbus Chicken Statute and More Bonehead
Legislation, S. Greene Press (1985).

[Levine (2003)] G. Levine, “Defining Deadlock”, Operating Systems Review, Vol-
ume 37, Number 1 (2003).

[Rodeheffer and Schroeder (1991)] T. L. Rodeheffer and M. D. Schroeder,
“Automatic Reconfiguration in Autonet”, Proceedings of the ACM Symposium
on Operating Systems Principles (1991), pages 183–97.

http://dl.acm.org/citation.cfm?id=1102034
http://doi.acm.org/10.1145/363156.363160
http://doi.acm.org/10.1145/356586.356588
http://scholar.google.com/scholar?hl/en&q=M J Bach The Design of the UNIX Operating System 1987
http://scholar.google.com/scholar?hl/en&q=D E Culler and J P Singh and A Gupta Parallel Computer Architecture A HardwareSoftware Approach 1998
http://doi.acm.org/10.1145/121132.121162
http://doi.acm.org/10.1145/121132.121162
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://scholar.google.com/scholar?hl/en&q=M J Bach The Design of the UNIX Operating System 1987
http://scholar.google.com/scholar?hl/en&q=M J Bach The Design of the UNIX Operating System 1987
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://doi.acm.org/10.1145/356586.356588
http://doi.acm.org/10.1145/356586.356588
http://doi.acm.org/10.1145/356586.356588
http://scholar.google.com/scholar?hl/en&q=D E Culler and J P Singh and A Gupta Parallel Computer Architecture A HardwareSoftware Approach 1998
http://scholar.google.com/scholar?hl/en&q=D E Culler and J P Singh and A Gupta Parallel Computer Architecture A HardwareSoftware Approach 1998
http://scholar.google.com/scholar?hl/en&q=D E Culler and J P Singh and A Gupta Parallel Computer Architecture A HardwareSoftware Approach 1998
http://dl.acm.org/citation.cfm?id=1102034
http://dl.acm.org/citation.cfm?id=1102034
http://doi.acm.org/10.1145/363156.363160
http://doi.acm.org/10.1145/363156.363160
http://dx.doi.org/10.1147/sj.72.0074
http://dx.doi.org/10.1147/sj.72.0074
http://dx.doi.org/10.1147/sj.72.0074
http://doi.acm.org/10.1145/356603.356607
http://doi.acm.org/10.1145/356603.356607
http://scholar.google.com/scholar?hl/en&q=D Hyman The Columbus Chicken Statute and More Bonehead Legislation 1985
http://scholar.google.com/scholar?hl/en&q=D Hyman The Columbus Chicken Statute and More Bonehead Legislation 1985
http://scholar.google.com/scholar?hl/en&q=D Hyman The Columbus Chicken Statute and More Bonehead Legislation 1985
http://scholar.google.com/scholar?hl/en&q=G Levine Defining Deadlock 2003
http://scholar.google.com/scholar?hl/en&q=G Levine Defining Deadlock 2003
http://doi.acm.org/10.1145/121132.121162
http://doi.acm.org/10.1145/121132.121162

	CPU Scheduling
	Bibliographical Notes


